Sparse Additive Functional and Kernel CCA

نویسندگان

  • Sivaraman Balakrishnan
  • Kriti Puniyani
  • John D. Lafferty
چکیده

Canonical Correlation Analysis (CCA) is a classical tool for finding correlations among the components of two random vectors. In recent years, CCA has been widely applied to the analysis of genomic data, where it is common for researchers to perform multiple assays on a single set of patient samples. Recent work has proposed sparse variants of CCA to address the high dimensionality of such data. However, classical and sparse CCA are based on linear models, and are thus limited in their ability to find general correlations. In this paper, we present two approaches to high-dimensional nonparametric CCA, building on recent developments in high-dimensional nonparametric regression. We present estimation procedures for both approaches, and analyze their theoretical properties in the high-dimensional setting. We demonstrate the effectiveness of these procedures in discovering nonlinear correlations via extensive simulations, as well as through experiments with genomic data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured functional additive regression in reproducing kernel Hilbert spaces.

Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularizat...

متن کامل

Human motion reconstruction from sparse 3D motion sensors using kernel CCA-based regression

This paper presents a real-time performance animation system that reproduces fullbody character animation based on sparse 3Dmotion sensors on a performer. Producing 1 In Computer Animation and Virtual Worlds, 24(6), 565-576, 2013 This version is the author's manuscript. faithful character animation from this setting is a mathematically ill-posed problem because input data from the sensors are n...

متن کامل

Nonparametric Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel o...

متن کامل

Minimax-optimal rates for high-dimensional sparse additive models over kernel classes

Sparse additive models are families of d-variate functions that have the additive decomposition f = ∑ j∈S f ∗ j , where S is an unknown subset of cardinality s ≪ d. We consider the case where each component function f j lies in a reproducing kernel Hilbert space, and analyze an l1 kernel-based method for estimating the unknown function f . Working within a highdimensional framework that allows ...

متن کامل

Canonical sparse cross-view correlation analysis

Recently, multi-view feature extraction has attracted great interest and Canonical Correlation Analysis (CCA) is a powerful technique for finding the linear correlation between two view variable sets. However, CCA does not consider the structure and cross view information in feature extraction, which is very important for subsequence tasks. In this paper, a new approach called Canonical Sparse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1206.4669  شماره 

صفحات  -

تاریخ انتشار 2012